Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour

نویسندگان

  • Andrei Martínez-Finkelshtein
  • Ramón A. Orive Rodríguez
چکیده

Classical Jacobi polynomials P (α,β) n , with α, β > −1, have a number of well-known properties, in particular the location of their zeros in the open interval (−1, 1). This property is no longer valid for other values of the parameters; in general, zeros are complex. In this paper we study the strong asymptotics of Jacobi polynomials where the real parameters αn, βn depend on n in such a way that lim n→∞ αn n = A , lim n→∞ βn n = B , with A,B ∈ R. We restrict our attention to the case where the limits A,B are not both positive and take values outside of the triangle bounded by the straight lines A = 0, B = 0 and A+B + 2 = 0. As a corollary, we show that in the limit the zeros distribute along certain curves that constitute trajectories of a quadratic differential. The non-hermitian orthogonality relations for Jacobi polynomials with varying parameters lie in the core of our approach; in the cases we consider, these relations hold on a single contour of the complex plane. The asymptotic analysis is performed using the Deift-Zhou steepest descent method based on the Riemann-Hilbert reformulation of Jacobi polynomials. ∗Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight

We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, which is a weight function with a finite number of algebraic singularities on [−1, 1]. The recurrence coefficients can be written in terms of the solution of the corresponding Riemann-Hilbert problem for orthogonal polynomials. Using the steepest descent method of Deift and...

متن کامل

The Riemann – Hilbert approach to strong asymptotics for orthogonal polynomials on [ − 1 , 1 ]

We consider polynomials that are orthogonal on [−1, 1] with respect to a modified Jacobi weight (1− x)α(1 + x)βh(x), with α, β > −1 and h real analytic and stricly positive on [−1, 1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [−1, 1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We als...

متن کامل

N ov 2 00 1 The Riemann – Hilbert approach to strong asymptotics for orthogonal polynomials on [ − 1 , 1 ]

We consider polynomials that are orthogonal on [−1, 1] with respect to a modified Jacobi weight (1− x)α(1 + x)βh(x), with α, β > −1 and h real analytic and stricly positive on [−1, 1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [−1, 1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We als...

متن کامل

Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials

Laguerre and Laguerre-type polynomials are orthogonal polynomials on the interval [0,∞) with respect to a weight function of the form w(x) = xαe−Q(x), Q(x) = m ∑ k=0 qkx , α > −1, qm > 0. The classical Laguerre polynomials correspond to Q(x) = x. The computation of higher-order terms of the asymptotic expansions of these polynomials for large degree becomes quite complicated, and a full descrip...

متن کامل

Riemann-Hilbert problem associated with Angelesco systems

Angelesco systems of measures with Jacobi type weights are considered. For such systems, strong asymptotics for the related multiple orthogonal polynomials are found as well as the Szegő-type functions. In the procedure, an approach from Riemann-Hilbert problem plays a fundamental role.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2005